
J .  Fluid Mech. (1967), vol. 29, part 1, p p .  137-150 

Printed in Great Bri tuin 

137 

The motion of a fluid due to a moving source 
of heat at the boundary 

By A. DAVEY 
National Physical Laboratory, Teddington, Middlesex 

(Received 3 August 1966) 

Experiments performed by Pultz et al. (1959) and Stern (1959) indicate that if a 
flame is rotated around the bottom exterior of a pan or of a circular cylindri- 
cal annulus containing water then the fluid acquires a net vertical component 
of angular momentum in a direction opposite to that of the flame’s motion. 
Stern gave an analysis showing how fluid, bounded by two horizontal plates 
subjected to small two-dimensional sinusoidal travelling temperature perturba- 
tions, could acquire and maintain such momentum. An assumption in Stern’s 
analysis was that the density variations were constant between the plates. 
Here we shall examine the importance of the relaxation of this assumption. 
Also, another model, in which the upper surface of the fluid is free, is analysed, 
because this model conforms more closely with the experiments of Fultz et al. 
and Stern. 

For the problem of flow between two plates we shall show that there is a net 
flux of momentum in the direction opposite to the motion of the thermal field for 
all frequencies thereof. The same result holds in the case with a free surface when 
conditions are comparable with those in the experiments. 

In  both problems the phase lag of the thermal expansion wave with height 
produces a skewed thermal field. This field is the most important mechanism in 
producing velocity correlations. It is due to these correlations and the associated 
Reynolds stress that the fluid acquires its momentum. 

1, Introduction 
Fultz et al. (1959) describe an experiment in which a flame is rotated around the 

outside bottom rimof a cylindrical vessel filled with water. They found that in the 
course of the establishment of motion from rest the fluid acquired a net angular 
momentum in the sense opposite to the motion of the flame. A similar experiment 
was performed by Stern (1959) who used a cylindrical annulus whose width was 
small compared with the depth of the water. Thus he was able to reduce the radial 
convection which was considerable in Fultz’s experiments. Stern also observed, 
by using paper markers and permanganate traces in the fluid, that a net momen- 
tum was acquired in the sense opposite to the motion of the flame. 

With these experiments in mind Stern examined a two-dimensional model 
(with no radial drift) to see whether a travelling wave heat source could impart 
momentum to fluid contained between two horizontal plates. He supposed that 
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each plate was subjected to the same sinusoidal temperature distribution, moving 
with uniform speed and in the same direction. Stern showed that the net hori- 
zontal flux of momentum of the fluid was proportional to the square of the 
amplitude of the density fluctuations at the plates, and he determined the 
momentum for small and large values of the frequency. He concentrated on the 
case when the depth of the fluid is small compared with the horizontal scale of 
the motion, and we shall also restrict attention to this case. 

In  Stern’s analysis, the density perturbations were taken to be independent of 
the normal co-ordinate to the plates. This assumption implies that the depth of 
the fluid is very small relative to a characteristic thermal boundary-layer thick- 
ness, based on the speed of the thermal field. The time taken for a thermal con- 
duction wave to propagate vertically through the fluid must therefore be much 
smaller than the period of the imposed travelling thermal field. This assumption 
is, however, invalid because the skewed thermal field, rather than viscosity, is 
the more important factor in creating velocity correlations which produce 
Reynolds stresses. Stern did have in mind, however, the problem (posed by 
Halley 1686, but see Stern 1959) where winds in the atmosphere might be pro- 
duced through periodic radiative heating by the sun. 

The limit of the results which we shall obtain, as the Prandtl number tends to 
zero in the low-frequency case, gives the same value for the net momentum of the 
flow as Stern obtained (after correcting one of his integrals). At high frequencies, 
Stern’s results are not, unfortunately, a good approximation at  small values of 
the Prandtl number because the asymptotic expansion for the net momentum is 
not uniformly valid. We shall also discuss the analysis of another model, with the 
fluid bounded by a plate below and having a free surface above, which would seem 
to conform more closely to the experiments carried out by Fultz and Stern. One 
difficulty with this problem lies in the choice of boundary conditions on the 
thermal field at the free surface. Detailed results will be given only for the case 
when the gas above the fluid is a perfect insulator. When conditions are com- 
parable with those in the experiments, a net flux of momentum in the opposite 
direction to the motion of the thermal field also occurs here. 

2. Basic analysis 
We consider the two-dimensional flow of a viscous fluid of depth h supported 

below by a horizontal plate. The x-axis is taken to be horizontal at  the mid-depth 
of the fluid and the z-axis is taken as the upward normal to the plate. We sup- 
pose that the plate is subjected to a sinusoidal temperature field which travels in 
the negative x-direction with uniform speed U. The mean motion, arising from 
non-linear interactions, is defined to be i i ( z ) ,  there is no basic uniform motion. 
The mean pressure is j5(z), and u‘, w’, p’, p‘ denote the horizontal and vertical 
velocity fluctuations, the pressure and density fluctuations, respectively, arising 
from the sinusoidal temperature perturbation. The mean density of the fluid 
is po, the kinematic viscosity is Y, and g is the downward vertical component of 
gravity. 

We wish to determine whether the imposed thermal field can produce a hori- 
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zontal mean motion of the fluid and, if so, to find its average horizontal momen- 
tum. The Navier-Stokes and continuity equations are 

and 

aur au' I a - 1 apf a2u aw aw) 
-+((u+u)-+w - ( U f U ' )  =---+v -+--+- , (1) 
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In  ( l ) ,  (2) and (3) we have ignored density variations except for their contribution 
to the buoyancy force, using the 'Boussinesq approximation '.t 

We suppose that pf/po is small so that we can linearize the perturbation equa- 

(4) 2w' = w eik(x+UO+c e-ihfx+Ut), 2p' = pleik(X+Ut)+ p e-ihfx+UL), 
1 1 1 

where a tilde denotes a complex conjugate. 
Let us now eliminate p' between the linearized forms of (1)  and (2) by differ- 

entiating with respect to z and x respectively and subtracting. We may then 
differentiate the resulting equation with respect to x and use (3) to obtain 

Using (4), the partial differential equation ( 5 )  may be written as the ordinary 
differential equation 

(ikU+vk2-v$) ( k 2 - $ )  w1 = --. 9k2Pl 
Po 

Following Stern, we confine attention to cases where the depth of the fluid is 
small compared with the wavelength of the thermal field so that k2h2 < 4 ~ 2 .  
(Other cases may be treated but the algebra is tortuous.) Making this approxima- 
tion in (6) we obtain d4w1 ikUd2wl gk2pl 

- -~ 
dz4 v dz2 VPO 

(7) 

When later we give solutions for low values of the frequency w = kU, we must 
keep the parameter ( U / k v )  large. This means physically that the characteristic 
time of the imposed thermal field must be small compared with the horizontal 
time scale of viscous diffusion. 

In  the experimental work, heat was transferred by molecular conduction. 
Hence we believe it to  be desirable to calculate the dependence of p1 on z from 
the temperature equation. We may linearize the temperature equation, an 

t The validity of this assumption has been justified a posteriori. At low frequencies of the 
travelling thermal field there is no difficulty. At high frequencies the requirement is that 
(k2h2)/A, (where A-l is a Froude number associated with the travelling thermal field), shall 
be small. This condition is well satisfied for all cases of the two problems considered in this 
paper. 
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approximation which involves the neglect of heat convection and dissipation, 
and obtain 

where T denotes the temperature and K the thermometric conductivity. We 
ignore the variation of K, v with temperature. Let us write 

(9) 
where T is the mean temperature with respect to x. We regard (9) as representing 
qualitatively the type of heating which occurs in experiments. After all, one can 
always impose conditions so as to give a realistic distribution at the boundary. 
As is a function of z alone it follows from (8) and (9) that it  must be linear. In 
the first problem which we shall consider, the value of at  the upper boundary 
is the same as at  the lower boundary. In  the second problem, the upper surface is 
supposed to be a good insulator and the depth of the fluid to be small. Thus, in 
both problems, we may suppose T and also the mean density po to be constant. 
Moreover, extracting the fundamental mode from (8) and (9), we have 

2T = 2T + Tl eik(x+Ut) + e--ik@+Ut) 
1 

which, given two boundary conditions on T, enables us to determine Tl. The 
equation of state tells us that the density variation p1 is proportional to TI; thus, 
we may determine the right-hand side of (7) and, consequently, the velocity if 
given four boundary conditions thereon. 

We evaluate the mean motion by extracting the mean part of (1) over one 
wavelength. With the help of (3) we find that the mean motion, generated by 
the Reynolds stress, satisfies 

daa 
v - = - (u’zu’). 

dx2 dz 

Equation (11) requires two boundary conditions on u for its solution. One 
necessary condition is that at  the plate ZL must be zero. One other condition at the 
upper surface, such as zero velocity or zero stress, is then sufficient. Sfter having 
solved (1 1)) we may evaluate the integral of U. so as to obtain the net momentum 
of the fluid. We notice that this will be of the order of the square of the mean 
density fluctuation. 

Before proceeding to the next section we complete our definitions with 

(12) 1 z = hc, = W h 2 / K ,  a2 = ifi2P-l 

W =  hU,  P =  V / K ,  h 2 = i o ,  

A = gh/U2. 

The quantity fi is a frequency parameter and measures the ratio of the time scale 
for heat to diffuse through a distance h, to the time scale imposed by the moving 
thermal field. Alternatively, we may regard it as the square of the ratio of the 
height h to a characteristic thermal boundary-layer thickness ( K / w ) ~ .  
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3. The closed problem 
In the problem considered by Stern he supposed that the upper surface of the 

fluid was also bounded by a horizontal plate. The same thermal field was applied 
to this plate as to the lower plate. 

From (10) and (12) the solution for Tl with boundary conditions Tl = T,, at 
c =  *+ is 

(13) 
TI coshhc 
Tlw cosh+h ' 

where a subscript w denotes the value at the walls. Hence if we use the equation 
of state with (13)' then (7),  with the aid of (12)' may be written 

_ -  - 

where we have defined F ( c )  by 

and a dash denotes differentiation with respect to c. The boundary conditions 
are u' = w' = 0 a t  the walls so that 

P = P ' = 0  at < =  +I. 2 (16) 

The solution of (14) and (16) is 

h tanh +A [ cosh a 7  - ( cosh A<) 
a tanh +a cosh &a cash 4h 

(P- 1)F = ___- 1-- 1-- 

At the walls the mean velocity U must be zero; we use these conditions along with 
(4), (12) and (15) and integrate (11) twice. We then integrate by parts to remove 
the double integral, and, as P is an even function, we find that the average mean 
velocity ii of the fluid is given by 

where a second overbar denotes a mean value with respect to x and 9 denotes 
the imaginary part. For large and small values of Q, QP-l we find that 

- u=------- - ICK('+ ___ "lU' [Q5 + 0(Q7)], (Q small). 
12!P4 (kp ,U2)  

The solution for P obtained by Stern is the limit of (17) when A+ 0 (since 
h N Q*) with a fixed (P-tO with QP-l fixed). Since P exceeds unity for almost 
all liquids, it follows that the value of ii given by Stern for large values of QP-l 
but for a small value of s1 is not very relevant. We see from (19) that, for large 
values of the frequency, ii cc P4, whereas Stern gave 2 cc U-2'6. For low values 
of the frequency, (20) gives, for P- t  0, a result identical to the comparable one 
obtained by Stern, after correcting one of his integrals. Stern's theory is valid 
only if the diffusion time, h 2 / 4 ~ ,  required for heat to diffuse from the wall to the 
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channel centre, is small compared with both the viscous diffusion time h2/4v and 
also the period 2n-10. This requires mh2/K = Q 8r and P < 1, whereas in the 
experimental work of Fultz et al. and Stern P was about 6 (for water), and the 
smallest value of Q was 1100. 

4. The open problem 
The experiments of Fultz et al. and Stern were carried out with an upper free 

surface rather than with the fluid contained between two plates. Thus, it seems 
worthwhile to study a mathematical model with an upper free surface, as in 

z 

FIGURE 1. The motion with an upper free surface. 

figure 1. For the steady temperature field, there will be a balance at  the surface 
between the rate of transfer of heat by conduction in the liquid and the rate of 
loss of heat by convection and radiation. Under conditions similar to those in the 
experiments, with a depth of about 2 em and a temperature range of 40-50 "C, 
the heat loss by radiation will be slightly greater than the convective heat loss, 
and the value of (@/aC)/F will be about 0.3-0-4. It is thus not a happy approxima- 
tion to suppose that T and po are constant, although as the fluid is not deep the 
actual variations of and po throughout the fluid are small. We take F ,  po as 
constant then in order to present the simplest solution which nevertheless con- 
tains all the characteristics of the more general solution obtained with an upper 
boundary condition of the form aF/a<+/3p = 0. For the unsteady temperature 
field, there is no appreciable heat loss by convection, and nearly all the heat 
transfer is a balance between conduction and radiation. The true boundary con- 
dition is thus of the form aTl/a<+/3Tl = 0, where /3 has a value of about 0.2 
However, for simplicity, we assume /3 = 0, so as to obtain definite results which 
indicate the nature of the solution. Indeed, our solution will be the leading term 
of the general solution expanded in powers of p .  
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Thus, we take T; = 0 at  [ = fr; the solution of (10) is then 

TI coshh(<- 4) - = _ _ ~  
TI, coshh ’ 
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with Tl = Tlw at [ = -&. Hence, using (7),  (12), (15), (21) and the equation of 
state, the equation for F ( [ )  is now 

The boundary conditions at the plate are u’ = w’ = 0, so that F = F‘ = 0 when 
[ = - 4. At the surface, the pressure is constant and equal to the atmospheric 
pressure (pressure fluctuations in the atmosphere caused by water waves are 
negligible) and there is zero stress across the surface. 

Let the upper surface be at  x = +h + ~ ( x ,  t )  and suppose that 

(23) 27 = T ~ ~ W Z + U O + ~ ,  e-ik(Z+UO, 

with 7, constant. Because the free surface moves with the fluid, we can write 

on using (4) and (23). Thus, as u‘/U is of order plto/po, we have to the required 
order of approximation, near the upper surface, 

W I  = uaT/ax. (24) 

We obtain our ks t  boundary condition at the free surface by considering the 
pressure there. This will be continuous so that 

awl 
pogy-p’+ 2p - = constant. 

ax 

It is permissible to omit the higher-order terms due to the slope of the surface. 
Now differentiate (25) with respect to x,  eliminate 7 using (24), and eliminate the 
pressure gradient by use of (l), retaining only those terms of order plw/po to 
obtain 

where use has also been made of the continuity equation (3). We may ignore 
the second term as k2h2 4 4m2. Using (4), (12) and (15), the required boundary 
condition may be expressed as 

F“-a2F+a2AF = 0 at  [ =  4. (26) 

The values of A in the experiments were about 135 (Fultz et aZ.), 7500 (Fultz et al.) 
and 50 (Stern). 

We obtain our second boundary condition from the zero-stress requirement at 
the surface, ignoring any possible effects due to surface tension or evaporation. 
We determine this condition correct to second order in plw/po because, although 
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we only need terms of order plw/po to find the boundary condition on F ,  we shall 
need the fuller condition later to enable us to solve the mean-motion equation. 
Small suffixes s and n are used, as in figure 2, to denote the tangential and normal 
directions at  the surface, with B denoting the small clockwise angle between the 
x-direction and the outward normal. 

FIGTJRE 2. Co-ordinate directions at the upper surface. 

At  the upper surface there is zero shear stress so that 

v -+- = O  at z = + h + ~ .  (2 (27) 

For small values of 6 ,  of order plzo/po, we transform (27) to our original co- 
ordinates (x,z), ignoring terms of order (plw/p0)3. In  this connexion, it must be 
remembered that u', w' are of order plw/po, but that U is of order (pl,/po)2. We 
find after neglecting a term aw'jax which is small compared with a d l a x  when 
k2h2 47r2 and using (3),  that 

aui au aul as 
a2 ax ax ax - + - + 46 - + u'- = O(plw/p0)3 a t  z = gh + 9. 

Hence, after using Taylor's theorem to obtain the appropriate condition a t  
z = +h we have, to order that 

Only the first term in (28) is of order plw/po, so that, with reference to (4) and (15), 
the required boundary condition on P is simply 

p " = O  a t  [=I 2' (29) 
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The function P(5) may now be found from (22), imposing P = F' = 0 a t  6 = - 4 
and the conditions (26) and (29). The solution is 

cosh A( 6 - 4) 
F = A +B{+Ccosha<+Dsinha{+ (P- 1)coshh' (30) 

where A ,  B,  C, D are rather cumbersome functions of a, A, P (or hla) (which may 
be obtained from the boundary conditions as the solution of four simultaneous 
linear equations). 

To determine the mean motion, we integrate ( 1  1) once so that 

du 7' 
ax v - - u w = c (a constant). (31) 

Now E = - arlax and, with the aid of (4) and (15), we may show that the last two 
terms in (28) may be ignored compared with 7 a2u'/az2 because k2h2 < 4 ~ 2 .  
Thus, if we make this approximation and extract the mean part of (28) of order 
(p1t(;/Po)2, we find that 

This enables us to find the value of c in (31) as follows: set 6 = =& and eliminate 2 
between (31) and (32); then use (4), (24) to express c in terms of w, and its deriva- 
tives. We may then use (12) and (15) to express c in terms of F and its derivatives, 
and the resulting expression may be simplified by using (26 )  to give simply 
c = 0. Thus, as expected, the fluid imparts no energy to the atmosphere, and the 
mean motion is governed entirely by the Reynolds stress. 

We again use B t o  denote the average mean velocity of the fluid with respect 
to z. At the plate U = 0; we use this condition, along with c = 0, to integrate (31) 

twice. After a single integration by parts and use of (4), (12) and (15), we obtain 

For large and small values of Q, QP-I we find that 

13P+90 3A 
[Q5+O(C17)] (a  small). 

(34) 

(35) 

In  figure 3 we show how the phase angles between u', w' and T' vary with depth 
for a typical large frequency case. We note that in the upper half of the fluid uf , 
w' are almost completely out of phase, whereas the phase angle between u', T' 
is continuously changing due to the high speed of the thermal field compared to 
the speed of heat transport. 

10 Fluid Mech. 29 
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Phase angles 
for large B 

FIGURE 3. Typical variation of phase angles between u', w' and T' with depth for large values 
of Q, W-1; (results for P = 6, A = 1000; L2 = 1000). y is the phase lead of u' over w' and 6 
is the phase lead of u' over T'. 

/ 
- 0.5 
- 0.4 

- 0.3 

- 0.2 

- 0.1 

I 

n Lt -0  ((;-8)/lon) I 

FIGURE 4. Variation of phase angles between u', wf and T' with depth for small values of a, 
W-l; (results for P = 6, A = 1000). y is the phase lead of u' over w' and 6 is the phase lead 
of u' over T'. 
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In  figure 4 we show how the phase angles between u‘, w‘ and T‘ vary with depth 
when the frequency is small but A is so large that the mean motion is in the same 
direction as that of the imposed thermal field. The phase angles are of order Q 
and we have plotted the limiting values of the phase angles divided by s2 as Q 
tends to zero. We note that the phase angles are almost linear functions of the 
depth except close to the upper free surface. 

In  figure 5 we indicate the variation with depth of the mean motion U for both 
the high- and the low-frequency cases. In  the high-frequency case we obtain a 
boundary-layer type profile with zero gradient at  both the boundaries, the flow 
is in the opposite direction to that of the imposed thermal field (which travels in 
the negative x-direction). In  the low-frequency case which is domfna ted by the 
large value of A, the mean motion is in the opposite direction and has quite a 
different profile. 

In  the experiments the flow was observed by means of marked particles on the 
free surface whose drift velocity could be measured. Our analysis may be com- 
pared with the experimental results, by considering the mass-transport velocity 
0, which is the steady drift velocity of the fluid particles. It is known (Longuet- 
Higgins 1953) that, when the motion is a fluctuation from a state of rest, the 
mass-transport velocity is given to second order in plw/p0 by 

In (36) the integrals are indefinite, and the overbar denotes the mean value with 
respect to time over a complete period; there is no mass transport in the x -  
direction. At the surface au‘/ax = 0,  to order plw/po, from (28) and (29). Thus we 
may use (a), (15) and (31), integrated once with c = 0,  to write (36) a t  the surface 

If we measure Us experimentally, we may obtain a good estimate of E ,  for we 
may use (34), (35) and (37) to obtain 

- 
a 3 P 2 + p % + 1 0 P + P t + 3  + O( Q-l) (Q large); _ -  
0 s -  l -  24 Q* (B + 1) (p+1) 

It is also interesting to know the relationship between Us and ns. Again we 
integrate (31) with c = 0 and use (4) and (15) to obtain Us, which is, in fact, the 
first term of (37). With this knowledge, and (37), we find that 

+O(Q4) (Q small). 
Q2( 11P + 91 - 60A) - u.=- 

US 5600P2 (41) 

10-2 
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With caution we note from (39) and (41) that at low frequencies and when A 
is also sufficiently small then as is opposite in sign to both u and Us. Thus in this 
extreme case an experimental measure of the drift velocity is not a good guide to 
the mean motion; the second term of (36) is dominant. 

5 = z/h 
4 

I . 

L 4 . 5  
FIGURE 5. The variation with depth of the mean motion Z; (results for P = 6, A = 1000) 

5.  Discussion of the results 
In the type of problem discussed in this paper, in which the fluid motion is 

determined solely by the temperature at  the boundary, there are nevertheless 
several different physical mechanisms which decide the extent of the flow. These 
mechanisms are associated with the following velocities namely: (i) the velocity 
of propagation of a typical thermal conduction wave, (ii) the velocity of propaga- 
tion of viscous diffusion, (iii) the velocity produced by buoyancy due to the ther- 
mal wave, and (iv) the velocity of the imposed temperature field at  the boundary. 

The most important point is that there is a phase lag, increasing with height, 
between the thermal conduction wave and the temperature field at  the boundary. 
Only at  very low frequencies is it realistic to assume iixfinite vertical conduction 
because then the vertical, buoyant convection takes place much more rapidly 
than horizontal heat transport. At high frequencies, as in the experiments, the 
velocity correlation is due almost entirely to thermal effects and not to viscosity. 
In  particular, u'w' is not zero in the limit as v+O, K + 0. The mean horizontal 
momentum of the flow depends on the square of the buoyancy force, which pro- 
duces opposite velocities near the upper and lower boundaries. In  the closed 
problem, there are two fixed boundaries on which these motions can produce 

~ 



Mot ion  due to a moving Source of heat 149 

horizontal stresses. At high frequencies, the flow is of a boundary-layer character 
of thickness ( K / w ) ~ ,  outside of which the mean velocity is almost uniform. 

For the closed problem, we see from (19), that at  high frequencies the value of 
E is positive and proportional to P4. At low frequencies (20) indicates that B is 
again positive and proportional to U .  It seems reasonable to  suppose then that 
at all frequencies the net mean momentum is in the opposite direction to that of 
the thermal field, (which travels in the negative x-direction), with a maximum 
value occurring for some intermediate value of U.  For the open problem, (34) 
indicates that Z is again positive a t  high frequencies provided (1 - A) is not small.? 
The value of (1 -A)  was far from small in all the experimental work, details of 
which are given in table 1. At low frequencies, with reference to (35), the sign of 
B is the same as the sign of (52P + 360 - 231h). If the channel is shallow enough 
(A small), then Z will be positive as before. However, with, say, P = 6, the mean 
motion will be in the same direction as that of the thermal field for A > 3. All the 
experiments were high frequency cases, and they confirmed that the motion is in 
the direction opposite to that of the thermal field. Unfortunately no detailed 
velocity measurements were taken. We note from (38) that the mean velocity 
must have a boundary-layer profile at high frequencies. 

R P A kh kic 

Stern 1100 4.1 50 0.133 1.01 x lo-* 
Fultz et aZ. 1300 5.5 7500 0.382 0.99 x lop4 
Fultz et al. 9900 6.0 135 0.382 0 . 9 7 ~  lo-* 

TABLE 1. Experimental data 

The energy equation for the velocity fluctuations may be obtained as follows: 
take the linearized forms of (1) and (2), and multiply, respectively, by u‘ and w’, 
and add to obtain 

- - ( u ’ Z + , $ p ) = - -  i a  u’-++w’- Pf ( ” ’1 82 - W’P, g + v(u’V2u’ + W’V~W’).  (42) 
2 at PO 

Now integrate over a volume of the fluid to obtain 

where or is the fluctuating vorticity; the pressure terms give no contribution. 
Thus we see that the energy of the motion derives from work done by the gravita- 
tional field due to density variations caused by the thermal field. A balance is 
then maintained with viscous dissipation. 

t When A = 1 the thermal field moves at  the same speed as free surface waves and 
resonance occurs. Thus the surface waves continuously extract energy from the flow and 
increase in amplitude until a breakdown occurs. Unfortunately no experimental work has 
as yet been done for values of A near unity. 
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6.  Concluding remarks 
In this paper we have primarily examined the equilibrium motion developed 

when heat sources move under a liquid layer which has an upper free surface. We 
have found that a net mean momentum is present, indicating that the velocity 
fluctuations transfer momentum which is balanced by the stress developed by 
the mean velocity field. We have not considered how this mean momentum is 
developed from rest, but Stern has suggested the following sequence: initially the 
mean momentum flux is zero, but a Reynolds stress gradually generates momen- 
tum flux in a region far away from the constraining boundary; this is countered 
by a momentum flux in the opposite direction near the boundary. The boundary 
exercises a restraint and destroys this neighbouring momentum but leaves that 
which is far away from the boundary. Thus, in equilibrium, a mean momentum 
flux persists which is far away from the boundary, where the stress is zero. 

We have found that the mean momentum flux and the mass-transport velocity 
at  the surface are directed oppositely to the travelling thermal field, at  least under 
certain conditions. These are (i) that the wavelength is large compared with the 
depth of the fluid and (ii) that the frequency parameter is sufficiently high. Both 
of these conditions were realized in all the experiments so that agreement is 
established. Condition (ii) may be relaxed for the closed problem of $3. 

I am very grateful to Prof. J. T. Stuart and also to Dr F. P. Bretherton, Prof. 
R. E. Kelly, Prof. B. R. Morton, Dr D. Schofield and Prof. M. E. Stern and a 
referee for valuable help and constructive criticism. The work described above 
has been carried out as part of the research programme of the National Physical 
Laboratory. 

REFERENCES 

FUETZ, D. et al. 1959 Meteorological Monographs 4, no. 21, pp. 3&39. 
LONGUET-HIGGINS, M. S.  1953 Phil. Trans. A 245, 535. 
STERN, M. E. 1959 Tellus 11, 175. 


